Ethanol tolerance caused by slowpoke induction in Drosophila.

نویسندگان

  • Roshani B Cowmeadow
  • Harish R Krishnan
  • Alfredo Ghezzi
  • Yazan M Al'Hasan
  • Yan Z Wang
  • Nigel S Atkinson
چکیده

BACKGROUND The large-conductance calcium-activated potassium channel encoded by the slowpoke gene has recently been implicated in the ethanol response. Caenorhabditis elegans carrying mutations in this gene have altered ethanol sensitivity and Drosophila mutant for this gene are unable to acquire rapid tolerance to ethanol or anesthetics. In Drosophila, induction of slowpoke expression has been linked to anesthetic resistance. METHODS We used Drosophila as a model system to examine the relationship between slowpoke expression and ethanol tolerance. Real-time PCR and a reporter transgene were used to measure slowpoke induction after ethanol sedation. An inducible slowpoke transgene was used to manipulate slowpoke levels in the absence of ethanol sedation. RESULTS Ethanol sedation increased transcription from the slowpoke neural promoters but not from the slowpoke muscle/tracheal cell promoters. This neural-specific change was concomitant with the appearance of ethanol tolerance, leading us to suspect linkage between the two. Moreover, induction of slowpoke expression from a transgene produced a phenotype that mimics ethanol tolerance. CONCLUSIONS In Drosophila, ethanol sedation induces slowpoke expression in the nervous system and results in ethanol tolerance. The induction of slowpoke expression alone is sufficient to produce a phenotype that is indistinguishable from true ethanol tolerance. Therefore, the regulation of the slowpoke BK-type channel gene must play an integral role in the Drosophila ethanol response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The slowpoke gene is necessary for rapid ethanol tolerance in Drosophila.

BACKGROUND Ethanol is one of the most commonly used drugs in the world. We are interested in the compensatory mechanisms used by the nervous system to counter the effects of ethanol intoxication. Recently, the slowpoke BK-type calcium-activated potassium channel gene has been shown to be involved in ethanol sensitivity in Caenorhabditis elegans and in rapid tolerance to the anesthetic benzyl al...

متن کامل

Tissue-specific alternative splicing of BK channel transcripts in Drosophila.

BK-type calcium-activated potassium channels are large conductance channels that respond to changes in intracellular calcium and membrane potential. These channels are used in a wide variety of cell types and have recently been linked to drug sensitivity and tolerance. In both Drosophila and mammals, BK channels are encoded by the slowpoke gene. The Drosophila slowpoke gene includes 14 alternat...

متن کامل

Orchestration of Stepwise Synaptic Growth by K and Ca Channels in Drosophila

Synapse formation is tightly associated with neuronal excitability. We found striking synaptic overgrowth caused by Drosophila K channel mutations of the seizure and slowpoke genes, encoding Erg and Ca 2 -activated large-conductance (BK) channels, respectively. These mutants display two distinct patterns of “satellite” budding from larval motor terminus synaptic boutons. Double-mutant analysis ...

متن کامل

Orchestration of stepwise synaptic growth by K+ and Ca2+ channels in Drosophila.

Synapse formation is tightly associated with neuronal excitability. We found striking synaptic overgrowth caused by Drosophila K(+)-channel mutations of the seizure and slowpoke genes, encoding Erg and Ca(2+)-activated large-conductance (BK) channels, respectively. These mutants display two distinct patterns of "satellite" budding from larval motor terminus synaptic boutons. Double-mutant analy...

متن کامل

Functional Ethanol Tolerance in Drosophila

In humans, repeated alcohol consumption leads to the development of tolerance, manifested as a reduced physiological and behavioral response to a particular dose of alcohol. Here we show that adult Drosophila develop tolerance to the sedating and motor-impairing effects of ethanol with kinetics of acquisition and dissipation that mimic those seen in mammals. Importantly, this tolerance is not c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Alcoholism, clinical and experimental research

دوره 30 5  شماره 

صفحات  -

تاریخ انتشار 2006